# Unlocking Climate Finance to Accelerate Energy Access in Nigeria

November 2, 2021











IN PARTNERSHIP WITH ITAL





# **Research Context**

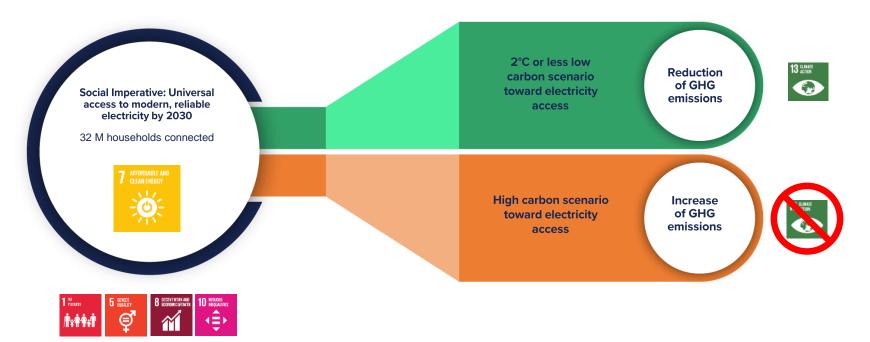
## This research is part of a series of reports from Catalyst Off-Grid Advisors and partners

They demonstrate the business opportunity to unlock billions in climate finance and deliver on multiple SDG goals.

- > Our <u>2018 research</u> demonstrated the financing opportunity to achieve universal household electrification in Africa (SDG 7) via off-grid solutions.
- > First launched on Earth Day 2021, and covering all of Sub-Saharan Africa, this research shows off-grid solar's social dividends, which cut across numerous SDGs1
- > Alongside the climate dividends attributable to low-carbon SDG 7 scenarios
- It forecasts the climate finance opportunity associated with these low-carbon SDG 7 scenarios
- Illustrating the multi-billion-dollar climate finance opportunity associated with the lowcarbon scenarios






0





### Modeling illustrates Nigeria's low-carbon scenarios and the impact they will have on SDG 13

**SDG 7** – Ensure access to affordable, reliable, sustainable and modern energy for all. **SDG 13** – Take urgent action to combat climate change and its impacts.



**Research Context** 

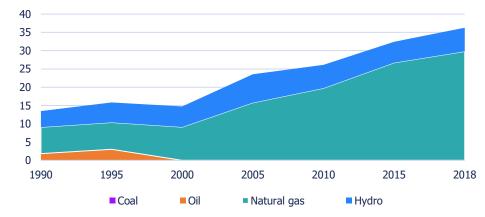
#### Low-carbon scenarios accelerate Nigeria's achievement of SDG 7 and SDG 13 via 3 pillars

Predictive modeling forecasts three scenarios for each thematic pillar: business-as-usual, high-carbon, and low-carbon, shows the avoided emissions between the latter two, and then provides the investment costs associated with the low-carbon scenario.



5




# Setting the Scene

## Nigeria's grid generation is dominated by fossil fuels

This reliance on fossil fuel generation presents a significant climate challenge

- > 38 percent increase in total generation since 2010, averaging 4.8% increase per annum
- > 50 percent increase in natural gas generation since 2010
- > 18 percent of generation from hydropower in 2018, down from 24 percent in 2010
- ~511 gCO<sub>2</sub>/kWh grid emissions intensity (including losses), 12th highest in Sub-Saharan Africa

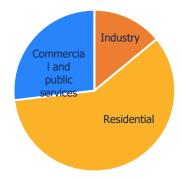
Nigeria Grid Electricity Production by Fuel



## Nigeria's residential sector accounts for the majority of electricity demand

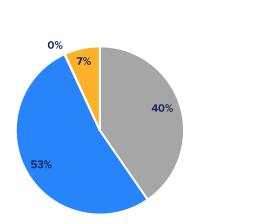


**69**% of global electricity demand driven by industrial and commercial off-takers




- **41%** of Nigeria's electricity demand driven by industrial and commercial off-takers. Commercial tariffs average \$0.096 / kWh which are low compared to global averages
- **27%** percent of global electricity demand originates from households




- **59**% of Nigeria's electricity demand originates from households
- 818 kWh per year residential demand per customer which is comparatively high. This can be partly explained by the low residential tariffs of \$0.01 / kWh to \$0.094 / kWh.

#### Nigeria Electricity Consumption by Sector (2018)



\* All "\$" in the report are United Stated Dollars (USD)

## Nigeria's grid electrification highlights a significant urban vs. rural divide in energy access



# Nigeria Estimates of Energy Access by Type (million HHs) 2019

- No Access
- Grid Access
- Minigrids
- Off-grid

- > 40% of households had no source of electrification (About 83 million people)
- 53% of households in Nigeria had electricity access from the national grid (About 108 million people)
- > About 19.4 million households will still be without access by 2030 under business as usual

### Nigeria's electrification strategy leverages the private sector

By mobilizing the private sector, Nigeria can deliver access to more underserved communities

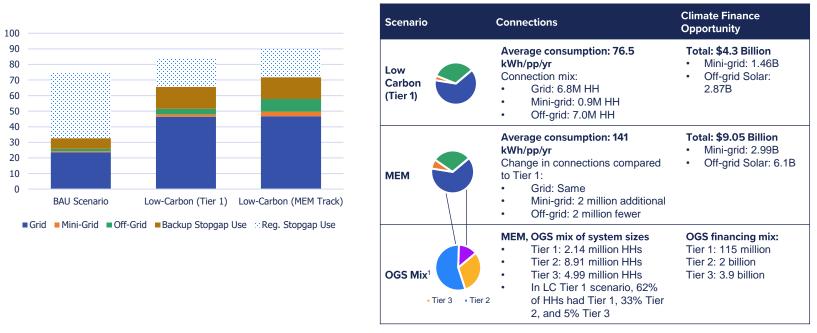




Electricity Access: Pathways and Gamechangers

# Tier 1 Pathway: Nigeria's low-carbon scenario for Tier 1\* access avoids 13 million tons CO<sub>2</sub> through scaled up mini-grid and off-grid solutions, and greener grid generation

And grid unreliability contributes significant additional emissions of 13.9 MT CO2 from backup stopgap usage




\*Tier 1 access is the minimum threshold for these scenarios and is defined as at least 4.3 kWh of electricity consumption per household per year – supporting basic lighting and device charging

<sup>1</sup>The low-carbon scenario has lower estimated emissions than the BAU scenario since emissions from electrification activities are more than offset by reductions in stopgap emissions.

# Achieving the Modern Energy Minimum (MEM)<sup>\*</sup> generates an additional 7 million tons CO<sub>2</sub>, though it unlocks higher levels of household consumption

To achieve the MEM (300 kWh/capita/year) by 2040, per person consumption exceed to 141 kWh by 2030



#### Sources: Catalyst estimates

<sup>1</sup>The MEM calls for a higher, more inclusive level of electricity consumption as a better access metric to raise global energy ambitions; Energy for Growth Hub, 2020.

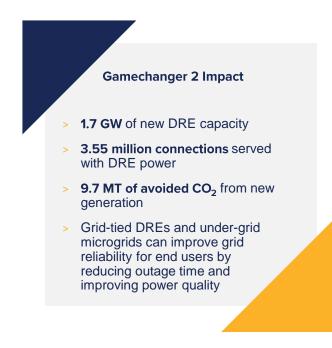


## Gamechanger 1: Grid-connected DREs to improve reliability and expand first time access

#### **The Challenge**

- Extreme grid unreliability: 33 outages/month = ~50% downtime
- > 82% of generation comes from emission intensive natural gas
- Low carbon universal access scenario envisages
   14.2 million new grid connections, spurring 69
   TWh of new consumption by 2030
- If 82% of new demand is met by gas power, this would lead to 39 MT CO<sub>2</sub> of additional emissions

#### The Opportunity


- Meet 25% of new grid generation demand via grid-connected DREs (e.g. Konexa) or potentially under-grid microgrids (e.g. Interconnected Mini-Grid Acceleration Scheme, Mokoloki)
- DRE generation would reduce emissions compared to a natural gas counterfactual
- DREs improve power reliability and quality, reducing transmission and distribution congestion, supporting power quality and regulation services, grid flexibility, islanding critical loads, etc.
- Support local manufacturing (e.g. Solar Connection Facility, Nigeria Borno Manufacturing Plant, etc.), via increased demand for DRE components

## **Gamechanger 1: Impact and key design considerations**

Contributing 25% of additional supply needed via DREs requires \$2.5 billion in climate finance and avoids nearly 10 million tons of CO<sub>2</sub> emissions

#### **Key Design Considerations**

- Implementation Arrangements: DRE ownership models or franchise models (i.e. Konexa) need to be considered
- Develop bankable power purchase agreement (PPA) framework for GenCos, IPPs, and mini-grid developers to sell to DISCOs or direct to customers
- Competitive tendering approach (or feed-in-tariff) to help ensure competition and value for money for the deployed DREs
- > Joint Planning: Ensure DREs are built into integrated resource and service network planning at DISCO levels
- Targets and Incentives: Fiscal incentives and/or generation mix targets would help foster buy-in on both buy and sell side of DRE generation
- Climate Finance: If avoided emissions were monetized, this could unlock nearly \$300 million in climate finance at a price of \$30 / ton





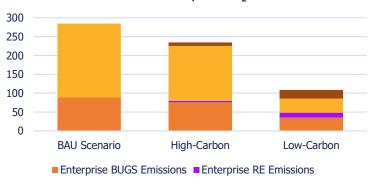
Unreliable Grid: Pathways and Gamechangers

# An unreliable grid and subsidized fuels leads to massive use of fossil fuel-powered gensets in Nigeria

Growing electricity demand will further stress grid reliability, while massive fuel subsidies distort the economic realities of using backup gensets

#### Unreliable grid connections

- In developing countries, unreliable grids are the primary driver for genset use:
- > About 75% of sites using fossil-fuel powered gensets are "grid connected"


In Nigeria alone:

- > 78% of firms experience outages
- > 33 outages in a typical month for total downtime of 380 hours (About 51 percent downtime)
- Unreliable grid connections result in an average 15.6 percent loss in business revenues

#### Use of backup gensets

- Backup fossil-fueled generators are used by households and enterprises
- Powered with fossil fuels, typically diesel or gasoline which is a significant source of air pollutants
- Off-grid enterprises often resort to using gensets for power, particularly for productive use applications
- In Nigeria, 173k gensets are deployed for commercial use (98% are on-grid businesses), while 3.2 million gensets are deployed for residential use (83% are grid connected residences); Overall 17 GW of capacity
- Diesel and petrol fuels have historically been subsidized and the current regulatory environment for subsidies is uncertain

## Replacing Nigeria's genset fleet with DREs would reduce emissions by 126 million tons of CO<sub>2</sub>



Comparison of 2021-2030 back-up genset

household and enterprise CO<sub>2</sub> emissions

Residential BUGS Emissions Residential RE Emissions

- Emissions reductions are driven by the growth rate in back-up genset fleets and the rate at which back-up gensets are replaced by renewables; replacement rates are varied across scenarios<sup>1</sup>
- In the low-carbon scenario displacing over 4.8 million assets with a total generation capacity of 24.5 gigawatts by 2030 would yield a \$60.2 billion climate finance opportunity.
- Generator displacement in later years is forecasted to be considerably cheaper thanks to ongoing reductions in RE technology costs, particularly lithium-ion batteries

<sup>1</sup>The modeling assumes that average capacity factors of back-up generators remain fixed over time, in line with historical averages (i.e., assumes no improvement or deterioration in grid reliability).

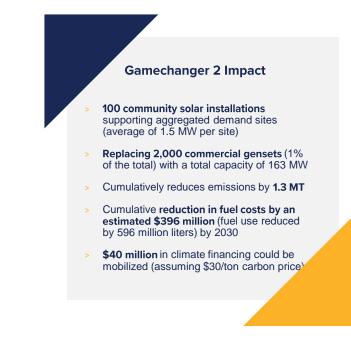
Sources: IFC Dirty Footprint of Broken Grid; SERC estimates; Catalyst estimates

## Gamechanger 2: Leverage genset density to aggregate demand for "community solar" schemes

#### **The Challenge**

- > 78% of Nigerian enterprises experience outages, leading to over 15% loss in business revenue
- > Over 70% of enterprises have gensets on site
- > 98% of these gensets are grid-connected and used as back-up.
- Fuel subsidies, unfavorable policies and regulations, and a nascent commercial solar sector make the economics genset replacement challenging

#### The Opportunity

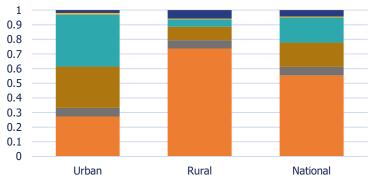

- Aggregate clusters of demand from existing grid-tied commercial gensets, bundling into for multi-customer "community solar" clusters
- Programmatic approach to identifying and clustering demand centers, leveraging existing platforms (e.g. REA GIS, Odyssey, Konexa, etc.) for this purpose
- Develop modality for private sector to build, finance, and operate these assets, via a competitive selection process
- Mobilize guarantee and subordinated capital to help de-risk early transactions and prove out business model

## Gamechanger 2: Impact and key design considerations

**\$300 million in climate finance** would cover investment for costs for community solar and storage systems at 100 aggregated commercial demand sites

#### **Key Design Considerations**

- Surveying, regulatory reporting, or other methods (e.g. satellite imagery) to map existing genset assets in Nigeria
- Structure PPAs and other commercial agreements to make demand aggregation & brokering bankable
- Ensure community solar planning is embedded into integrated resources planning for local service areas.
- Clarify regulatory considerations, e.g. licensing requirements, feed-in-tariffs, net metering, etc.
- Leverage economies of scale on system design as well as climate finance to support uptake and ensure cost competitiveness





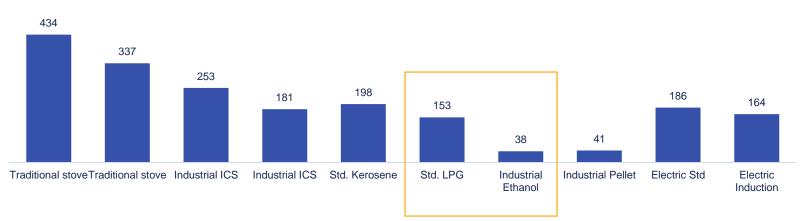

# Cleaner Cooking: Pathways and Gamechangers

#### **Cleaner Cooking**

# Firewood, charcoal, and kerosene cooking dominate in Nigeria, with notable LPG cooking penetration in urban areas



Household Cooking Fuel by Market Segment


■ Wood ■ Charcoal ■ Coal ■ Kerosene ■ LPG/NG/BG ■ Electricity ■ Other

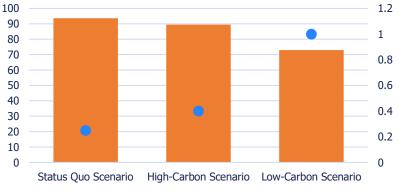
- > 28.1 million households (78.6% of total) in Nigeria use firewood, briquettes, kerosene, or charcoal as their main fuel for cooking
- > 218,000 people killed annually from household air pollution
- > 18 percent of households (35% in urban areas) cook primarily with LPG stoves
- > 34 percent of households utilize multiple types of stoves

#### **Cleaner Cooking**

# With high domestic supply, existing penetration, and existing policy targets the most likely modern cooking transition would be via LPG

However, LPG cooking itself is emission intensive, with only 22% lower emissions than cooking with kerosene




#### Stove and fuel emissions Intensity (kg CO<sub>2</sub>e/GJ)

\*Each fuel has a GHG emissions intensity factor (kgCO2e per gigajoule of fuel burned) which illustrates the carbon-intensity of the fuel when burned. When used in a particular stove, only a percentage of the burned fuel is converted into useful energy, resulting in a higher GHG emissions intensity in practice.

Source: Authors' analysis based on multiple sources including Penisse et al, Bailis et al; Clean Cooking Alliance's Clean Cooking Catalog, inter alia.

# Moving kerosene households onto LPG cooking can help avoid 17 million tons of $CO_2$ compared to a high-carbon scenario

In the low-carbon scenario, 6.7 million kerosene households would cook with modern fuels, primarily LPG



Cum. Emissions (2021-2030)

• % Kerosene HHs w/ Modern Solutions (2030)

- Kerosene customers are likely candidates to switch to LPG given similar products, existing customer awareness and marketing, and urban supply chains
- \$1.51 billion investment required to primarily produce and distribute LPG stoves (~4% of costs) as well as to support infrastructure development for LPG (~96% of costs)
- However, this is still a comparatively high emissions pathway given the marginal savings of LPG compared to kerosene

<sup>1</sup>In a household, the primary fuel is the one which accounts for the majority of cooking needs Sources: Catalyst estimates

## Gamechanger 3: Convert some of customers targeted for LPG to ethanol-based fuels

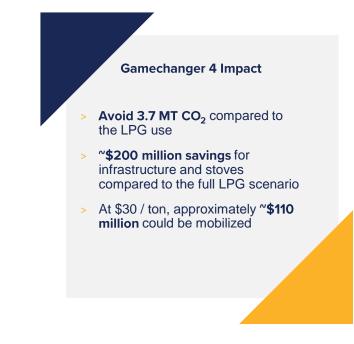
#### The Challenge

- About 6.7 million households cook with kerosene, producing an estimated 5.5 MTCO<sub>2</sub> in annual emissions
- LPG usage levels set to grow dramatically, with National LPG Expansion Plan targeting 90% LPG cooking, despite marginal emissions savings compared to kerosene
- Uncertain regulations and currency/market fluctuations, have caused price volatility
  - > LPG: Average price for a 5kg LPG cylinder increased 12% to \$5.39 from August 2020 to August 2021
  - Kerosene: Average price per liter increased 15% to \$0.97 in the same period

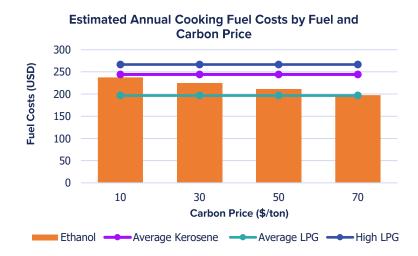
#### The Opportunity

- > Tap ethanol's 75% lower emissions compared to LPG cooking, to help support Nigeria's low carbon pathway
- Support 25% of households that cook with kerosene to transition to ethanol
- > Leverage climate finance to support adoption and cost competitiveness for ethanol fuels






## **Gamechanger 3: Impact and key design considerations**


**\$180 million** in climate finance to cover investment costs and support 1.7 million households that cook with kerosene to transition to ethanol instead of LPG

#### **Key Design Considerations**

- Developing a domestic market for ethanol cooking fuels including fuel imports as well as building domestic production over time
- Consumer awareness and behavioral change key barriers for adoption, though ethanol fuels/stoves are similar in operation and appearance to kerosene stoves
- Affordability of fuels is a critical factor for consumers switching cooking fuels (see next page)
- > Carbon finance could be used to reduce stove and fuel costs



# Gamechanger 3: Ethanol is cheaper than kerosene and monetizing avoided CO<sub>2</sub> emissions can boost cost-competitiveness



#### Average kerosene costs are **\$0.97** / **liter and LPG are \$0.55** / **liter**

Established ethanol cooking markets like Kenya have prices at **\$0.70** / **liter** 

With stove efficiencies and cooking needs total annual cooking costs are estimated at:

- Kerosene: \$244
- > LPG: \$197
- Ethanol: \$244 (assumes \$0.80/liter to account for nascent market)

Monetizing avoided  $CO_2$  emissions could make ethanol cost competitive, though this depends on carbon pricing on voluntary markets

Ethanol costs likely to come down as demand increases, further boosting competitiveness



# Summary

## Nigeria's energy sector: setting the scene

Key energy trends and their climate impacts illustrate the scope of the SDG 7 and SDG 13 challenges



**Electricity** access

- > 40% of Nigerians lack access to electricity, 16.9 million households
- Natural gas accounts for 82% of electricity generation, a 50% increase since 2010
- Nigeria's energy sector reforms emphasize private sector participation
- Nigeria also sees a prominent role for DREs in meeting their SDG7 ambitions



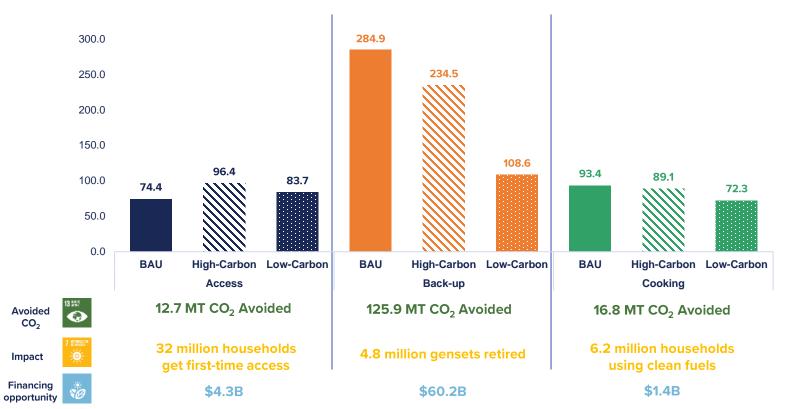
 Nigeria's grid, where available, is often unreliable, with enterprises experiencing an average of 51% downtime, and 15.6% revenue losses

- Consequently, there is an estimated 3.6 million backup gensets (17 GW) deployed in the country today.
- These gensets consume 9.9 billion liters of fossil fuels each year



**Cleaner cooking** 

#### > 82% of Nigeria's population use solid fuels for primary cooking needs


- > 218,000 people in Nigeria die annually from household air pollution
- > >17% of all households have already transitioned to LPG cooking, offering a pathway to more modern, clean cooking

**Summary** 

30

# The low-carbon scenarios avoid 153 million tons of CO<sub>2</sub>, deliver SDG 7 impacts, and unlock a substantial climate finance opportunity

Emissions from Nigeria's low-carbon scenarios are benchmarked against high-carbon counterfactuals; the difference between the two constitutes the avoided emissions



## Summing up: Nigeria's low-carbon path

Nigeria's low-carbon universal access path unlocks a US \$65.9 billion-dollar climate finance imperative



A low-carbon scenario contributes massively toward universal access

32 million new connections from off-grid technologies delivered

More than **4.8 million gensets** used by enterprises and households replaced

More than 6.2 million households cooking with kerosene now utilizing LPG



A low-carbon scenario benchmarked vs. a high-carbon scenario yields

153 million tons of avoided  $\mbox{CO}_2$  emissions over the next decade



A low-carbon scenario requires substantial volumes of new capital

\$4.3 billion climate finance opportunity for first time access

**\$60.2 billion** climate finance opportunity to green back-up generation for enterprises and households

\$1.4 billion climate finance opportunity for clean cooking

# Potential gamechangers to accelerate energy access and development in Nigeria

| Grid-connected<br>DREs                           | <ul> <li>Meet 25% of new grid generation via grid-connected DREs or undergrid renewable mini-grids instead of new natural gas power plants, reduce emissions by 9.7 MT</li> <li>Will also improve power reliability and quality, reducing transmission and distribution congestion, and supporting new energy access</li> </ul> |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Community Solar to<br>Displace Backup<br>Gensets | <ul> <li>Aggregate demand clusters from existing grid-tied commercial gensets and bundle them for multi-customer "community solar" clusters</li> <li>Develop 100 community solar installations to replace over 2,000 commercial gensets and avoid 1.3 MT of emissions</li> </ul>                                                |
| Clean Cooking with<br>Ethanol                    | <ul> <li>Develop a small but meaningful domestic market for ethanol cooking; support 25% of kerosene households to convert to ethanol cooking instead of LPG</li> <li>Avoid an additional 3.7 MT CO<sub>2</sub> and save ~\$200 million on infrastructure and stoves; carbon finance could play a critical role</li> </ul>      |

# Shell Foundation

In partnership with

sustainable ENERGY

**FOR ALL** 



Produced by



Backup genset research produced in association with

Schatz Energy Research Center

Backup genset research was based on previous work commissioned by





# Visit our website for more info.



info@catalystoffgrid.com



www.catalystoffgrid.com

https://www.linkedin.com/company/catalystoffgrid/

